Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary.
نویسندگان
چکیده
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement.
منابع مشابه
The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation.
The isthmic organizer, which patterns the anterior hindbrain and midbrain, is one of the most studied secondary organizers. In recent years, new insights have been reported on the molecular nature of its morphogenetic activity. Studies in chick, mouse and zebrafish have converged to show that mutually repressive interactions between the homeoproteins encoded by Otx and Gbx genes position this o...
متن کاملEN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region.
Fgf8, which is expressed at the embryonic mid/hindbrain junction, is required for and sufficient to induce the formation of midbrain and cerebellar structures. To address through what genetic pathways FGF8 acts, we examined the epistatic relationships of mid/hindbrain genes that respond to FGF8, using a novel mouse brain explant culture system. We found that En2 and Gbx2 are the first genes to ...
متن کاملRegionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2.
The anterior neural ridge (ANR), and the isthmic organiser (IsO) represent two signalling centres possessing organising properties necessary for forebrain (ANR) as well as midbrain and rostral hindbrain (IsO) development. An important mediator of ANR and IsO organising property is the signalling molecule FGF8. Previous work has indicated that correct positioning of the IsO and Fgf8 expression i...
متن کاملChanging Requirements for Gbx2 in Development of the Cerebellum and Maintenance of the Mid/Hindbrain Organizer
We examined whether Gbx2 is required after embryonic day 9 (E9) to repress Otx2 in the cerebellar anlage and position the midbrain/hindbrain organizer. In contrast to Gbx2 null mutants, mice lacking Gbx2 in rhombomere 1 (r1) after E9 (Gbx2-CKO) are viable and develop a cerebellum. A Gbx2-independent pathway can repress Otx2 in r1 after E9. Mid/hindbrain organizer gene expression, however, conti...
متن کاملFgf8 and Gbx2 induction concomitant with Otx2 repression is correlated with midbrain-hindbrain fate of caudal prosencephalon.
Chick/quail transplantation experiments were performed to analyse possible factors involved in the regionalisation of the midbrain-hindbrain domain. The caudal prosomeres, expressing Otx2, were transplanted at stage HH10 into rostrocaudal levels of the midbrain-hindbrain domain, either straddling the intra-metencephalic constriction (type 1 grafts), or at rostral and medial levels of pro-rhombo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 138 4 شماره
صفحات -
تاریخ انتشار 2011